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proved differential amplifier, the accuracy of this

method of measurement could be increased by an order

of magnitude.

Other uses of this system could be Q measurements

at millimeter-wave frequencies, thickness measurements

of dielectric sheets, or dielectric constant measurements

of known thickness sheets. This system has the further

advantage that it may be used over the entire milli-

meter-wave spectrum by changing only the source and

detectors to respond to the desired frequency.
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Some Characteristics of Alternating Gradient Optical
Transmission Lines

WILLIAM H. STEIER, MEMBER, IEEE

Abstract-The effect of adding a negative lens between each pair

of positive lenses of an optical transmission line is calculated. The
negative lens reduces the ability of the transmission line to control the

direction of the light beam. The changes in dominant mode spot size,

allowed bending radius, critical bend periodicity, and sensitivity to
random lateral lens displacements are computed for all ranges of lens
spacings and focal lengths which are stable.

INTRODUCTION

I

N SOIWE of the proposed light guidance methods

which use gas or schlieren-type lenses it may be

necessary to consider a system made of alternately

positive and negative focal length lenses. For example,

if tubular thermal gradient gas lenses [1 ]– [4 ] are used,

which employ a continuous stream of gas flowing

through them, it will be necessary to cool the gas peri-

odically. The region where the gas is cooled will consti-

tute a negative lens of possibly different power from the

positive lens [5]. It is of interest, therefore, to consider

how the periodic introduction of this negative lens

affects the ability of the light guide to control the

direction of the light beam.

In this paper, the effect of adding divergent lenses
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between each pair of positive lenses of a light guide will

be considered. The changes in beam spot size, allowed

bending radius of the guide, and stability of the guide

to lateral lens displacements are calculated for any ratio

of positive to negative lens power. Miller [6] previously

calculated the stability conditions and some optimum

design parameters for alternate gradient focusing when

the power of the positive lenses and the power of the

negative lenses are equal.

BEAM SPOT SIZE

Consider the transmission line shown in Fig. 1. A

negative lens of focal length —j/a is placed between

each pair of positive lenses of focal length f. The positive

lenses are spaced 2~f.

The properties of the dominant Gaussian mode of

this transmission line can be analyzed by the ray matrix

technique of Kogelnik [7]. The ray matrix is the trans-

formation matrix for ray position and slope between the

input and output planes. If the input plane is just to

the right of a positive lens and the output plane is just

to the right of the next positive lens, the ray matrix is

/kL!+l ‘f(2+ba) I 1A ‘1
@(l—p)—l

l+~(a–2–~a) = CD “
f
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Fig. 1. Alternating gradient optical transmission line.

Rigrod [8] and Kogelnik [7] have pointed out that the

lowest order Gaussian mode spot size w and the radius

of curvature of the phase front R of the dornina,nt mode

just to the right of the positive lens can be found from

the elements of the ray matrix. They show that

2B
R=

D–-A

7rw2 2B

k= 44–(A+D~

where A, B, C, and D are the matrix elements as shown,

and A is the wavelength.

If we substitute into these, we find

R=–2j

7rw2

[

P(2 + ed

1

1/2

~=2j
(2+/3a– 2ci)(2 -/?) “

(1)

Figure 2 shows the normalized spot size, [~/ (2X~) ] 1%,

as a function of a and ~.

The stability conditions for the transmission line as

seen from (1) are

()a—l
2— </.3 <2.

a

When a = 1 this agrees with Miller [6]. When the nega-

tive lens becomes stronger than the positive lens (a> 1),

the line becomes unstable if the lenses are brought too

close together. If a <1, the line is stable for O <~ <2.

However, when 13= O, Fig, 2 should not be used to be

consistent with the theory of Gaussian modes [9]. If

a = 1, the line is not stable when ~ = O since the lenses

then exactly cancel one another.

Figure 3 shows the shape of the dominant mode beam

envelope as the strength of the negative lens is in-

creased. when a = O, the spot size at the positive lens is

such that it gives a beam waist midway between the two

positive lenses. As the power of the negative lens in-

creases, the spot size at the positive lens increases. If it

were not for the negative lens, this beam \vould have a

waist further from the positive lens (shown as dotted

lines). The negative lens diverges the beam. As the

negative lens power continues to increase, the spot size

increases and the would-be beam waist moves further

out. In the limit the spot size is infinite and the would-

be beam waist occurs at 2~ from the positive lens.
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Fig, 2. Normalized dominant Gaussian mode spot size.
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Fig. 3. Effect on beam envelope of increasing the
negative lens power.

BENDING RADIUS OF THE LIGHT Gu IDE

An important consideration for a light guide is the

ability of the guide to control the beam direction. That

is, how much can the axis of the light guide be bent

\vithout losing the light beam? This is closely related to

the beam spot size as pointed out by Miller [10]. [t is

of interest to compute how the introduction of a nega-

tive lens between each pair of positive lenses, affects the

allowed bending radius of the light guide.

This can be computed using geometrical optics since

it has been shown that in the paraxial approximation

the center of a Gaussian beam follows the laws of geo-

metric optics [11], [12]. For simplicity, a lwo-

dimensional analysis will be made. This is applicable to

the three-dimensional case since it has been shown [13]

that the two transverse dimensions are independent and

can each be treated separately.
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Consider a sequence of positive and negative lenses f

placed on a curved axis of radius R, as shown in Fig. 4.

Plane “a” is just to the right of the positive lens “a,”

plane “b” is just to the right of the negative lens “b,”

and plane ‘(C” is just to the right of the next positive a

lens “c.” Let r be the position of the ray measured from

the lens center, and r’ be the ray slope measured from

the line joining the lenses.

Following Pierce [14],

Ylj = r. + @fy.’

CY?’b
t’bt= 7.’+@+—

f
r. = qb+ fif?’b’

Fig. 4. Curved axis transmission line.

rc’=qb’++—h.

f

Combining these, and defining Y.= r., r.= r,,+l, and let-
n+ I

ting @ =~f/R, n

(Bf)2
rn+l = ?’.(1 + pa) + ?-n’i?f(2 + pa) + y “ (2)

*

/
/

/
/

*

/

From this the difference equation can be derived as
I

r.+, - [2 – 2~(1 – a) – ,l?’a]rn+, + ‘r. = ~; [4 + @a]. (3)
-.

Figure 5 shows a straight section of guide followed by

a curved section. The first lens on the curved section is

labeled “O.” Let us assume a ray incident upon lens “O”
o

!!7

R --------
r.

at r. with angle ~ measured with respect to the straight
Y

guide axis. The initial conditions are therefore

Yo = 70

#_~
\—

ro’ =
2R f Fig. 5. Beam injection into curved transmission line.

?’1= ?’0(1 + ,8a — 2/3 – p%) + -y/3f(2 + pa)

+ (Bf)2(4+ &)
2R “

fPj2(4 + Pa) + W(4 + Da)
?’. =

2R(1 – COS @ [ 1
+ r, Cos no

2R(1 – COS @

Using the method of Hirano and Fukatsu [13], the solu-

tion to the difference equation (3) for the ray on the +[p(2+~~~-i)]sinfi~. (4)

curved guide can be written as

I’n+l = y (4 + /3.) $0~ + ?’, ‘in:n;1)0
sin nO

—ro —
sin e

where

19= COS-’ l–p+pa–!?!( )2“

After substitution of the initial conditions and use of

trigonometric identities, this can be written as

Equation (4) shows how the beam oscillates about the

axis of the guide when the axis is curved. If we assume

the beam enters on axis (ro =y = O), the maximum ampli-

tude of the beam oscillation is

H2(4 + Da) @f2(4 + Pa)
?’.= =

R(1 – COS 8) =

‘(1-”+3 “

If the r~ax is defined by how much the beam is allowed

to wander in the guide, then the allowed bending radius

of the guide can be found from
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Fig. 6. Effect on allowed bending radius.

~ _ Bf2(4 + Pa) —.

(
rmax 1 – a + ~f’

/)

For the case of no divergent lenses (a= O), the allowed

bending radius is

,o=~
?’max

which agrees with hlarcuse [15]. The r~,x will be deter-

mined by the lens diameters. If we awsume a constant

positive lens diameter, the effect on the bending radius

of adding the divergent lenses can be found from

R 4+&l’
— . —. .

‘o4(1-+%)
This gives a measure of the extent tcj which the diver-

gent lenses reduce the light guide’s ability to control the

direction of the light beam. Figure 6 shows R/Ro as a

function of a and ~.

STABILITY DUE TO LATERAL LENS DISPLACEMENTS

Any lateral displacement of a lens from the straight

line axis will deflect the light beam and cause it to fol-

low an oscillatory path thereafter. If the amplitude of

the oscillatory path is large, the beam will hit the edge

of a lens and be lost.

For correlated lateral lens displacements, the ampli-

tude of the displacements which have periodicities near

the critical period icity must be kept very low to prevent

loss of the beam [16]–[18 ]. The critical periodicity is

determined by the lens focal length and spacing.

For random lateral lens displacements, the expected

beam deviation at the output is proportional to the

square root of the number of lenses and the rms lens dis-

placement [13], [19]. This beam deviation from the

line axis can become large when the number of lenses is

large.

The construction and laying tolerances of a transmis-

sion line will be largely determined by the effects of

lateral lens displacements. If it is necessary to introduce

a negative lens periodically, it is of interest to know how

these tolerances are affected. The negaltive lens will

change the critical periodicity and will change the sensi-

tivity to random lens displacements.

The homogeneous portion of the difference equation

given as (3) has solutions of the form

7-% = .4 ‘in {,,co,-, ( )}I–H.-;– .
Cos

If the nominal axis of the guide is straight, the lens dis-

placements act as a driving term in the difference equa-

tion. If the driving terms have the same periodicity as

the solutions to the homogeneous equation, one would

expect large beam deviations. The critical period A,, can

therefore be defined as

L

( )
cos-l l–/3+/3a-~-

where L = spacing between the positive lenses. Figure 7

shows A./L as a function of a and ft. For a fixed lens

spacing the critical period becomes larger as the strength

of the negative lens increases. If the transmission line

has a serpentine bend or random bends whose periods

are near A,, the beam deviation will become large and

the beam will be lost when it hits the lens eclges.

The sensitivity to random lens displacements can be

found by using the same method as Hirano and Fukatsu

[13]. Using the notation shown in Fig. 8 we can write

rb’ = Tar +:(r–db)

where db = distance from the center of the divergent lens

to the transmission line axis, and t.= distance from the

center of the convergent lens to the transmission line

axis. Both db and t.are positive if the lens center is above

the transmission line axis.
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Fig. 7. Effect on critical period.

(2) (b) (c)

Fig. 8. Lateral lens displacement.

If tn and d,, are the displacements of the lenses to the

left of the nth plane, then the difference equation can

be written as

?’n+, – [2 – 2~(1 – a) – ,&a]f’n+, + ‘r.

= t.+l(2p + /%!) – @(d.+1 + dn+z) .

Using the same technique as in Section III, the solution,

ifrO=rl=O, is

yn = +:2 [f,.+,(2 + Pa) – a(d,+l + &+2)l

*sin (n — 1 — k)O.

For random displacements we assume

(t,) == (d,) = o

(td~) = (d~d~) = O k # m

(t,dn) = O for all k

(t,’) = (d,’) = w’
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Fig. 9. Increase in sensitivity to random lateral
lens displacement.

where the symbols ( ) denote the expected values of

random variables.

From this one can compute that

<(s’,,+,’) = ~
{

[2d + (2+ ,fh)’]

“[
sin (27z — 1)0

++:–
Cos 2?20

4sin0 – 2 1

[

cos M sin ?20

1) -

1/2

+a’ lzcoso–

sin 0

In the case where n is large and we are sufficiently far

from an unstable arrangement (sin 19# O), then

<(7.+,’) = Fu~; (5)

~There

(

I 2(CY’+ 1) + @a(a’ – a+2)+@@(l_a) 1’2
2

F= /9

1 [
I(2–8) l+a(P–l)+7(B–2)] ,

When a = O, this is the same as the F1 defined by Hirano

and Fulcatsu [13].

Hence, the expected value of the output beam dis-

placement still increases as the square root of n. The

introduction of the negative lens increases the sensi-

tivity to random lens displacements by increasing F.

The function F is plotted in Fig. 9. It should be

pointed out that the number n actually represents 2n
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lenses, i.e., n positive lenses and n negative lenses. There

are therefore 2n lenses, all of which have random lateral

displacements with an rms value of o..

For the case of positive lenses spaced confocally and

equal power negative lenses (a= (3= 1), then

< (7.+,2) = 2.82u~~.

In the case of no negative lenses (a== O, (3= 1), then

~ (Vn+,’) = 1.41aV’i.

In the first case the expected deviation of the output

beam is twice that of the second case, but there are

twice as many lenses to align in the first case. If this

increase in lateral sensitivity were clue only to the in-

creased number of lenses, one would expect an increase

of only @. The additional factor of ~1 is due to the

reduced focusing properties of the line.

SUMMARY

As expected, the addition of the ne,gative lenses re-

duces the ability of the transmission line to control the

light beam. However, if the power of the negative lenses

is kept equal to or less than the power of the positive

lenses, the reduction in guiding ability is not too severe.

For example, consider a transmission

lenses spaced confocally (/3=1) and add

of the same power (a= 1):

1)

2)

3)

4)

The spot size at the positive lens

1.315.

line of positive

negative lenses

is increased by

The allowed bending radius is increased by 2.5.

The critical bending period is increased by 1.5.

The sensitivity to random lateral lens displace-

ments is increased by 2.
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Mode Conversion in Tapered Waveguides At

and Near Cutoff

C. C. H. TANG

Abstract—The coupling coefficient between the TEu mode and
the TM] I mode in taperecl circular waveguicles is derived, and at
cutoff frequency it tends to approach an infinity of the order of 0–1/4.
It is surprising to discover that the corresponding coupling coefficient

between the TE,o mode and the TMIz mode in tapered rectangular
waveguides approaches instead a zero of the order of O11~at cutoff
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frequency. Accordingly, for the modes concerned, the choice of using

circular or square waveguides as tapers for tramsitio,n at and near

cutoff frequency is significant in reducing mode conversion level. At

and near cutoff frequency a “synthesized” square taper is better in

that it is shorter than a “synthesized” circular taper for the same

mode conversion levels. On the other hand, for frequencies far away

from cutoff the choice is insignificant.

Design procedures for “synthesized” waveguide tapers at and

near cutoff are presented, and the results of measurements are in

agreement with the theoretical calculations.
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