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proved differential amplifier, the accuracy of this
method of measurement could be increased by an order
of magnitude.

Other uses of this system could be Q measurements
at millimeter-wave frequencies, thickness measurements
of dielectric sheets, or dielectric constant measurements
of known thickness sheets. This system has the further
advantage that it may be used over the entire milli-
meter-wave spectrum by changing only the source and
detectors to respond to the desired frequency.
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Some Characteristics of Alternating Gradient Optical
Transmission Lines

WILLIAM H. STEIER, MEMBER, IEEE

Abstract—The effect of adding a negative lens between each pair
of positive lenses of an optical transmission line is calculated. The
negative lens reduces the ability of the transmission line to control the
direction of the light beam. The changes in dominant mode spot size,
allowed bending radius, critical bend periodicity, and sensitivity to
random lateral lens displacements are computed for all ranges of lens
spacings and focal lengths which are stable.

INTRODUCTION

N SOME of the proposed light guidance methods
I[ which use gas or schlieren-type lenses it may be
necessary to consider a system made of alternately
positive and negative focal length lenses. For example,
if tubular thermal gradient gas lenses [1]-[4] are used,
which employ a continuous stream of gas flowing
through them, it will be necessary to cool the gas peri-
odically. The region where the gas is cooled will consti-
tute a negative lens of possibly different power from the
positive lens [5]. It is of interest, therefore, to consider
how the periodic introduction of this negative lens
affects the ability of the light guide to control the
direction of the light beam.
In this paper, the effect of adding divergent lenses
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between each pair of positive lenses of a light guide will
be considered. The changes in beam spot size, allowed
bending radius of the guide, and stability of the guide
to lateral lens displacements are calculated for any ratio
of positive to negative lens power. Miller [6] previously
calculated the stability conditions and some optimum
design parameters for alternate gradient focusing when
the power of the positive lenses and the power of the
negative lenses are equal.

BeaM Sport Size

Consider the transmission line shown in Fig. 1. A
negative lens of focal length —f/« is placed between
each pair of positive lenses of focal length f. The positive
lenses are spaced 23f.

The properties of the dominant Gaussian mode of
this transmission line can be analyzed by the ray matrix
technique of Kogelnik [7]. The ray matrix is the trans-
formation matrix for ray position and slope between the
input and output planes. If the input plane is just to
the right of a positive lens and the output plane is just
to the right of the next positive lens, the ray matrix is

Ba -+ 1 Bf(2 + Ba) A B
1—6) —1 - .
Oi(—fm—— 14 8a— 2 — Ba) C D
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Fig. 1. Alternating gradient optical transmission line.

Rigrod [8] and Kogelnik {7] have pointed out that the
lowest order Gaussian mode spot size w and the radius
of curvature of the phase front R of the dominant mode
just to the right of the positive lens can be found from
the elements of the ray matrix. They show that

2B
D~ 4
rw? 2B

N VAi— (4T Dy

where 4, B, C, and D are the matrix elements as shown,
and A is the wavelength,
If we substitute into these, we find

R:

R=—2f
0 B(2 + Ba) 1
™ ) .
Y [(zwa— 2)(2 —m] M

Figure 2 shows the normalized spot size, [7/(2\)]"w,
as a function of @ and 8.

The stability conditions for the transmission line as

seen from (1) are

a—1

o(
o

When «=1 this agrees with Miller [6]. When the nega-
tive lens becomes stronger than the positive lens (> 1),
the line becomes unstable if the lenses are brought too
close together. If @ <1, the line is stable for 0 <B<2.
However, when =0, Fig. 2 should not be used to be
consistent with the theory of Gaussian modes [9]. If
a=1, the line is not stable when 8=0 since the lenses
then exactly cancel one another.

Figure 3 shows the shape of the dominant mode beam
envelope as the strength of the negative lens is in-
creased. When a =10, the spot size at the positive lens is
such that it gives a beam waist midway between the two
positive lenses. As the power of the negative lens in-
creases, the spot size at the positive lens increases. If it
were not for the negative lens, this beam would have a
waist further from the positive lens (shown as dotted
lines). The negative lens diverges the beam. As the
negative lens power continues to increase, the spot size
increases and the would-be beam waist moves further
out. In the limit the spot size is infinite and the would-
be beam waist occurs at 2f from the positive lens.

><B<2.
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Normalized dominant Gaussian mode spot size.

Fig. 3. Effect on beam envelope of increasing the

negative lens power.

BeNDING RaDIUS oF THE LiGHT GUIDE

An important consideration for a light guide is the
ability of the guide to control the beam direction. That
is, how much can the axis of the light guide be bent
without losing the light beam? This is closely related to
the beam spot size as pointed out by Miller [10]. [t is
of interest to compute how the introduction of a nega-
tive lens between each pair of positive lenses affects the
allowed bending radius of the light guide.

This can be computed using geometrical optics since
it has been shown that in the paraxial approximation
the center of a Gaussian beam follows the laws of geo-
metric optics [11], [12]. For simplicity, a two-
dimensional analysis will be made. This is applicable to
the three-dimensional case since it has been shown [13]
that the two transverse dimensions are independent and
can each be treated separately.
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Consider a sequence of positive and negative lenses
placed on a curved axis of radius R, as shown in Fig. 4.
Plane “a” is just to the right of the positive lens “a,”
plane “b” is just to the right of the negative lens “b,”
and plane “c” is just to the right of the next positive
lens “c.” Let 7 be the position of the ray measured from
the lens center, and 7’ be the ray slope measured from
the line joining the lenses.

Following Pierce [14],

Ty = Vo + ,Bfra,

4 ’ arb
ry =1 + ¢+
7. = o + Bfry
I + ‘b e
re = rs - —
f

Combining these, and defining ro=7,, ¥.=7,,1, and let-
ting ® =3f/R,

Yry1 = 7'7,(1 'I',BOC) + 7 .Bf(z + Be ) + <Bf)

2)

From this the difference equation can be derived as

2f2

Tops — [2 — 28(1 — @) — B2a)tuys + 70 = = [4 4+ 8al. (3)

Figure 5 shows a straight section of guide followed by
a curved section. The first lens on the curved section is
labeled “0.” Let us assume a ray incident upon lens “0”
at o with angle v measured with respect to the straight
guide axis. The initial conditions are therefore

Yo = ¥y
[
W=yt ——

re = ro(1 + Ba — 28 — B%x) + vBf(2 + Be)
B+ )
2R

Using the method of Hirano and Fukatsu [13], the solu-
tion to the difference equation (3) for the ray on the
curved guide can be written as

% sin k0 sin (n + 1)8

+n

Trnyr =

i—o sIn @ sin @

sin n0

— 7y —
sin 6

where
182
0 = cos—l(l —,8-{—,8a—7>

After substitution of the initial conditions and use of
trigonometric identities, this can be written as
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Fig. 4. Curved axis transmission line.
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Fig. 5. Beam injection into curved transmission line,
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Equation (4) shows how the beam oscillates about the
axis of the guide when the axis is curved. If we assume
the beam enters on axis (ro=v =0), the maximum ampli-
tude of the beam oscillation is

B (4 + o)
R(l — cos 0)

Bf*(4 + Ba)

R<1 —a—I—Ba>

If the 7.« is defined by how much the beam is allowed
to wander in the guide, then the allowed bending radius
of the guide can be found from

max
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Fig. 6.

Effect on allowed bending radius.

Bf*(4 + Ba)

R = B

Ymax (1 - & + ﬁ)

2,

For the case of no divergent lenses (a=0), the allowed
bending radius is

_

0=

rm ax

which agrees with Marcuse [15]. The #max will be deter-
mined by the Jens diameters. If we assume a constant
positive lens diameter, the effect on the bending radius
of adding the divergent lenses can be found from

R 4 4+ Ba

R o
’ 4<1—a+ﬁ—>
2

This gives a measure of the extent to which the diver-
gent lenses reduce the light guide’s ability to control the
direction of the light beam. Figure 6 shows R/R, as a
function of « and S.

STABILITY DUE TO LATERAL LENS DISPLACEMENTS

Any lateral displacement of a lens from the straight
line axis will deflect the light beam and cause it to fol-
low an oscillatory path thereafter. If the amplitude of
the oscillatory path is large, the beam will hit the edge
of a lens and be lost.

For correlated lateral lens displacements, the ampli-
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tude of the displacements which have periodicities near
the critical periodicity must be kept very low to prevent
loss of the beam [16]-[18]. The critical periodicity is
determined by the lens focal length and spacing.

For random lateral lens displacements, the expected
beam deviation at the output is proportional to the
square root of the number of lenses and the rms lens dis-
placement [13], [19]. This beam deviation from the
line axis can become large when the number of lenses is
large.

The construction and laying tolerances of a transmis-
sion line will be largely determined by the effects of
lateral lens displacements. If it is necessary to introduce
a negative lens periodically, it is of interest to know how
these tolerances are affected. The negative lens will
change the critical periodicity and will change the sensi-
tivity to random lens displacements.

The homogeneous portion of the difference equation
given as (3) has solutions of the form

z:; {n cos™?! (1 — B8+ Ba — ﬁ—;)} .

If the nominal axis of the guide is straight, the lens dis-
placements act as a driving term in the difference equa-
tion. If the driving terms have the same periodicity as
the solutions to the homogeneous equation, one would
expect large beam deviations. The critical period A, can
therefore be defined as

A 27

f - B
cos™? <1 — B+ Ba — 2—>

where L =spacing between the positive lenses. Figure 7
shows A,/L as a function of « and 8. For a fixed lens
spacing the critical period becomes larger as the strength
of the negative lens increases. If the transmission line
has a serpentine bend or random bends whose periods
are near A., the beam deviation will become large and
the beam will be lost when it hits the lens edges.

The sensitivity to random lens displacements can be
found by using the same method as Hirano and Fukatsu
[13]. Using the notation shown in Fig. 8 we can write

ry = 7.+ Bfrd

Tn = A

I

rb'

"+ 20— @)
[ f b,

ve = 15 1+ Bfry

ro, = rbl - (rc - ic)
f

where dy =distance from the center of the divergent lens
to the transmission line axis, and #,=distance from the
center of the convergent lens to the transmission line
axis. Both d; and £, are positive if the lens center is above
the transmission line axis.
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Fig. 8. Lateral lens displacement.

If ¢, and d,, are the displacements of the lenses to the
left of the nth plane, then the difference equation can
be written as

oz — [2 = 28(1 — @) — Balrapr+7a
= Zfﬂ+1<2#3 + ‘82‘1) - Ba<dn+1 -+ dn+2)-

Using the same technique as in Section 111, the solution,
if ro=r1=0, is

n—1
o = .ﬂ 2 (2 + Ba) — aldiyr + digs)]
sin 0 k=0

-sin (n — 1 — k)6.
For random displacements we assume
() = {dx) =0
(ttmy = {dpdn) =0 k& m
(rdm)y = 0 for all 2
) = (&*) = o
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Fig. 9. Increase in sensitivity to random lateral

lens displacement.

where the symbols { ) denote the expected values of
random variables,
From this one can compute that

I Ba
V (tn?) = {[2&2 + (2 + Ba)?]
sin 6

|:n 1 sin(2n—1)8 cos 2n9:|

2 4 4 sin @ 2
cos n sin #07) /2
+ of [;z cos 6 — wi]} .
sin 6

In the case where # is large and we are sufficiently far
from an unstable arrangement (sin 6£0), then

V{reia®) =~ Fo/n (5)
where

,826\’.2 1/2

2(&{2—}—1)—!—&1(&2—(1—]—2)—!—7(1—a)

-

(2—6)[1+a<5—1>+°%6(ﬁ—2>]

When a=0, this is the same as the F; defined by Hirano
and Fukatsu [13].

Hence, the expected value of the output beam dis-
placement still increases as the square root of #. The
introduction of the negative lens increases the sensi-
tivity to random lens displacements by increasing F.

The function F is plotted in Fig. 9. It should be
pointed out that the number # actually represents 2#
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lenses, i.e., # positive lenses and # negative lenses. There
are therefore 27 lenses, all of which have random lateral
displacements with an rms value of ¢.

For the case of positive lenses spaced confocally and
equal power negative lenses (¢ =03=1), then

) = 2.820/7.

In the case of no negative lenses («¢=0, 8=1), then

VD = 14lov/n.

In the first case the expected deviation of the output
beam is twice that of the second case, but there are
twice as many lenses to align in the first case. If this
increase in lateral sensitivity were due only to the in-
creased number of lenses, one would expect an increase
of only +/2. The additional factor of A2 is due to the
reduced focusing properties of the line.

SUMMARY

As expected, the addition of the negative lenses re-
duces the ability of the transmission line to control the
light beam. However, if the power of the negative lenses
is kept equal to or less than the power of the positive
lenses, the reduction in guiding ability is not too severe.

For example, consider a transmission line of positive
lenses spaced confocally (8=1) and add negative lenses
of the same power (a=1):

1) The spot size at the positive lens is increased by
1.315.

2) The allowed bending radius is increased by 2.5.

3) The critical bending period is increased by 1.5.

4) The sensitivity to random lateral lens displace-
ments is increased by 2.
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Mode Conversion in Tapered Waveguides At
and Near Cutoff

C. C. H. TANG

Abstract—The coupling coefficient between the TE; mode and
the TM,; mode in tapered circular waveguides is derived, and at
cutoff frequency it tends to approach an infinity of the order of 0~/4
It is surprising to discover that the corresponding coupling coefficient
between the TE;; mode and the TM;; mode in tapered rectangular
waveguides approaches instead a zero of the order of 0'/* at cutoff
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frequency. Accordingly, for the modes concerned, the choice of using
circular or square waveguides as tapers for transition at and near
cutoff frequency is significant in reducing mode conversion level. At
and near cutoff frequency a “synthesized” square taper is better in
that it is shorter than a “synthesized” circular taper for the same
mode conversion levels. On the other hand, for frequencies far away
from cutoff the choice is insignificant.

Design procedures for “synthesized” waveguide tapers at and
near cutoff are presented, and the results of measurements are in
agreement with the theoretical calculations.
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